Multilinear eigenfunction estimates for the Laplace spectral projectors on compact manifolds Estimées multilinéaires pour les projecteurs spectraux du laplacien sur les variétés compactes
نویسندگان
چکیده
The purpose of this note is to extend to any space dimension the bilinear estimate for eigenfunctions of the Laplace operator on a compact manifold (without boundary) obtained in [1] in dimension 2. We also give some related trilinear estimates. Résumé L’objet de cette note est de généraliser à toute dimension d’espace les estimations bilinéaires de projecteurs spectraux de l’opérateur de Laplace sur une variété compacte (sans bord), démontrées dans [1] en dimension 2. On énonce aussi des estimations trilinéaires. Version française abrégée Soit (M, g) une variété riemanienne compacte, C (sans bord) et ∆ le laplacien sur les fonctions de M . Nous avons obtenu précédemment ([1]) des estimées bilinéaires sur les Email addresses: [email protected] (N. Burq), [email protected] (P. Gérard), [email protected] (N. Tzvetkov). URLs: http ://www.math.u-psud.fr/ burq (N. Burq), http ://www.math.u-psud.fr/ tzvetkov, (N. Tzvetkov). Preprint submitted to Elsevier Science 1 février 2008 projecteurs spectraux du laplacien dans le cas où la dimension de M est 2. Le but de cette note est de généraliser ces estimées en toute dimension d’espace : Théorème 0.1 Soit χ ∈ S(R). Pour λ ∈ R on note χλ = χ( √ −∆− λ) le projecteur spectral autour de λ. Il existe C tel que pour tous λ, μ ≥ 1, f, g ∈ L(M), ‖χλf χμg‖L2(M) ≤ CΛ(d,min(λ, μ))‖f‖L2(M)‖g‖L2(M), avec
منابع مشابه
2 2 A ug 2 00 3 BILINEAR EIGENFUNCTION ESTIMATES AND THE NONLINEAR SCHRÖDINGER EQUATION ON SURFACES
— We study the cubic non linear Schrödinger equation (NLS) on compact surfaces. On the sphere S 2 and more generally on Zoll surfaces, we prove that, for s > 1/4, NLS is uniformly well-posed in H s , which is sharp on the sphere. The main ingredient in our proof is a sharp bilinear estimate for Laplace spectral projectors on compact surfaces. Résumé. — Onétudie l'´ equation de Schrödinger non l...
متن کاملGraph Eigenfunctions and Quantum Unique Ergodicity
We apply the techniques of [BL10] to study joint eigenfunctions of the Laplacian and one Hecke operator on compact congruence surfaces, and joint eigenfunctions of the two partial Laplacians on compact quotients of H × H. In both cases, we show that quantum limit measures of such sequences of eigenfunctions carry positive entropy on almost every ergodic component. Together with the work of [Lin...
متن کاملThe Resolvent for Laplace-type Operators on Asymptotically Conic Spaces
Let X be a compact manifold with boundary, and g a scattering metric on X, which may be either of short range or ‘gravitational’ long range type. Thus, g gives X the geometric structure of a complete manifold with an asymptotically conic end. Let H be an operator of the form H = ∆ + P , where ∆ is the Laplacian with respect to g and P is a self-adjoint first order scattering differential operat...
متن کاملNonlinear Schrödinger Equation on Four - Dimensional Compact Manifolds
— We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadr...
متن کاملMultilinear Eigenfunction Estimates and Global Existence for the Three Dimensional
— We study nonlinear Schrödinger equations, posed on a three dimensional Riemannian manifold M . We prove global existence of strong H solutions on M = S and M = S × S as far as the nonlinearity is defocusing and sub-quintic and thus we extend results of Ginibre-Velo and Bourgain who treated the cases of the Euclidean space R and the torus T = R/Z respectively. The main ingredient in our argume...
متن کامل